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Abstract

The free bending vibration of rotating tapered beams is investigated by using the dynamic stiffness method. The range of

problems considered includes beams for which the depth and/or width of the cross-section vary linearly along the length.

First, the governing differential equation of motion of the rotating tapered beam in free flap bending vibration is derived

for the most general case using Hamilton’s principle, allowing for the effects of centrifugal stiffening, an arbitrary outboard

force and the hub radius term. For harmonic oscillation the differential equation is solved for bending displacement by

applying the Frobenius method of series solution. The expressions for bending rotation, shear force and bending moment

at any cross-section of the beam are also obtained in explicit analytical form. Then the dynamic stiffness matrix is

developed, by relating the amplitudes of forces and moments to those of the displacements and rotations at the ends of the

harmonically vibrating tapered beam. Next the Wittrick–Williams algorithm is used as a solution technique to the resulting

dynamic stiffness matrix to compute the natural frequencies and mode shapes of some illustrative examples. A parametric

study is carried out to demonstrate the effects of rotational speed, taper ratio and hub radius on the results, which are

discussed and compared with the published ones. Finally some conclusions are drawn.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The free vibration analysis of rotating uniform beams has been investigated more or less continuously over
a long period and this is clearly evident from the literature. A few selective recent papers are quoted [1–4]
which provide further references on the subject. By contrast, the free vibration analysis of rotating tapered
beams appears to have been carried out relatively recently [4–8]. One of the reasons for this may be due to the
fact that a tapered (or non-uniform) beam can be idealised as a collection of uniform beams to achieve
sufficiently accurate results, without resorting to an in-depth original research. An example can be found in
Ref. [4], which uses the dynamic stiffness theory of rotating uniform beams in order to analyse the free
vibration behaviour of rotating tapered beams. The literature on the free vibration analysis of rotating beams
shows that a wide range of different, but complementary methods has been used [9–15]. A significant
contribution to the literature in recent years is the application of the dynamic stiffness method [4] to solve the
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free vibration problem of rotating beams. There are other research papers on rotating Timoshenko beams
[16–18], but this particular subject matter is outside the scope of the present paper, which uses the
Bernoulli–Euler theory.

An important reason for using the dynamic stiffness method is that it gives exact results for all natural
frequencies and mode shapes, without making any approximation en route [19]. This is possible because the
method uses exact member theory based on frequency-dependant shape functions obtained from the solution
of the governing differential equations of motion of the structural element undergoing free vibration. Thus the
dynamic stiffness method has always been distinctive and is used with advantage wherever possible, for
example, in validating the finite element and other approximate methods. It is well known that the finite
element and other approximate methods become more and more unreliable at higher frequencies.
Furthermore, one of the great advantages of the dynamic stiffness method is that the results are independent
of the number of elements used in the analysis. For instance, one single structural element can be used to
obtain any number of its natural frequencies and mode shapes to any desired accuracy. This is clearly
impossible in the finite element and other approximate methods in which the results are generally, if not
always, dependant on the number and quality of the elements used in the analysis. This has in part motivated
the current work, which sets out to derive the dynamic stiffness matrix of a rotating tapered beam and then to
use it to investigate its free vibration characteristics.
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Nomenclature

ai+1 coefficients of Frobenius series, see Eqs.
(22), (26)–(27), (29)–(30), (36)–(37)

A(y) area of cross-section at a distance y from
the origin

A1–A4 arbitrary constants used in series solu-
tion of Frobenius method, see Eq. (28)

c taper ratio
C1–C10 non-dimensional beam parameters, see

Eqs. (24) and (35)
C̄1 � C̄7 non-dimensional beam parameters, see

Eq. (13)
E Young’s modulus of elasticity
EI0 bending rigidity at the left-hand end

(thick end) of the tapered beam
EI(y) bending rigidity of beam cross-section at

a distance y from the origin
f function used for the series obtained

using the Frobenius method of solution
F0 outboard force at the right-hand end

(thin-end) of the tapered beam
F(y) centrifugal force at a distance y from the

origin
F amplitude of the force vector, see Eqs.

(45)–(46) and (48)
H matrix defined in Eqs. (42) and (44)
k parameter used in the Frobenius method

to generate the indicial equation
K dynamic stiffness matrix, see Eqs.

(48)–(49)
L length of the tapered beam

m0 mass per unit length at the left-hand end
(thick end) of the tapered beam

m(y) mass per unit length of beam cross-
section at a distance y from the origin

M bending moment
n integer defining the type of taper, see

Eqs. (1) and (2), n is either 1 or 2
Q matrix defined in Eqs. (45) and (47)
rH hub radius
S shear force
T kinetic energy of the rotating tapered

beam
U potential energy of the rotating tapered

beam
w transverse or flap wise bending displace-

ment
W amplitude of transverse or flap wise

bending displacement
X, Y, Z rectangular Cartesian coordinate system
d variational operator
d displacement vector
z non-dimensional variable defined in Eq.

(18)
Z non-dimensional rotational speed, see

Eq. (50)
y bending rotation
li non-dimensional natural frequencies, see

Eqs. (50) and (51)
x non-dimensional length defined in Eq.

(11)
r mass density of material
o circular or angular frequency
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The range of problems considered includes beams with linearly varying taper in depth and/or width of the
cross-section along the length. In terms of cross-sectional properties this essentially means that the area and
the second moment of area of the beam can vary in two different ways. In the case when either the depth or the
width (but not both) of the beam varies linearly along the length, the corresponding variation of the area of
cross-section will be linear whereas the variation of the second moment of area will be cubic. On the other
hand when both the depth and the width vary linearly, the variation of the cross-sectional area will follow a
square law whereas the second moment of area variation will be of fourth power. Using these two types of
property variations, a large number of cross-sections can be constructed [20,21], which cover a large number of
practical cases. For instance, a linearly varying tapered beam with thin-walled circular cross-section of
constant thickness falls in the former category whereas the one with a solid circular cross-section will belong to
the latter.

For validation purposes the availability of essential numerical results from independent sources is
important, particularly for the present study, which uses an exact dynamic stiffness theory and is specially
aimed to establish benchmark solutions to the problem. In this respect, there are some published numerical
results with high degree of accuracy [7] for the free vibration problem of rotating tapered beams of the former
type, dealing with linear variation of the area and cubic variation of the second moment of area. However, for
the latter type of problems for which the area and the second moment of area of the cross-section follow,
respectively, a square and fourth power law, Khulief [8] appears to be the only author who reported
detailed numerical results with sufficient number of significant figures, covering a wide range. During the
course of the present investigation the work of Khulief [8] was given due recognition, but unfortunately, it was
observed that the results are somehow inaccurate. The present authors spent considerable time in checking
their theory with the (perceived) understanding that the published results of Ref. [8] were sufficiently accurate.
Having expended a great deal of effort in checking the theory and associated computer programs, the authors
carried out an additional finite element analysis of the problem alongside their dynamic stiffness work.
Furthermore, an independent confirmation of the correctness of the authors’ results came from a private
communication [22], which provided some further stimulus to the research. A brief synopsis of the work is as
follows.

Starting from the derivation of the governing differential equations of motion in free vibration, using
Hamilton’s principle, the dynamic stiffness matrix of a harmonically vibrating tapered beam is developed for a
general case with the effects of hub radius and the centrifugal force taken into account. The dynamic stiffness
matrix is then applied with particular reference to the Wittrick–William algorithm [23], yielding natural
frequencies and mode shapes of some examples. The numerical results are discussed and compared with
published ones.

2. Theory

The two types of rotating tapered beams considered in this paper are shown in Figs. 1 and 2, respectively, in
a right-handed Cartesian coordinate system with the Y-axis coinciding with the axis of the beam. The Z-axis is
taken to be parallel, but not coincidental with the axis of rotation. It is assumed that the tapered beam is
rotating at a constant angular velocity O with an arbitrary hub radius rH as shown. The tapered beam shown
in Fig. 1 displays a linear variation of depth and a constant width of the cross-section along the length whereas
the one in Fig. 2 shows a linear variation of both width and depth. Clearly for the former the variations of
cross-sectional area and second moment of area are linear and cubic whereas those for the latter are of second
and fourth order, respectively.

If L is the length, c is the taper ratio, A(y) and I(y) are the area and second moment of area of the cross-
section at a distance y, and r and E are the density and Young’s modulus of the (isotropic) beam material,
respectively, then the variations of the mass per unit length m(y), and the bending rigidity EI(y) for both types
of tapered beam can be expressed by using the following formulas:

mðyÞ ¼ rAðyÞ ¼ m0 1� c
y

L

� �n

(1)
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and

EIðyÞ ¼ EI0 1� c
y

L

� �nþ2

, (2)

where m0 and EI0 are the mass per unit length and the flexural rigidity at the left-hand end of the beam,
respectively. The integer n takes the value 1 for the first type (see Fig. 1) and 2 for the second type (see Fig. 2)
of tapered beams described by Eqs. (1) and (2). A large number of cross-sections can be constructed by using
these two values of n (see Refs. [20,21]), covering many practical cases. However, the rectangular cross-section
is shown in Figs. 1 and 2 only for convenience. (It is evident that for such a cross-section, if one of the
dimensions, say, the depth, is varied linearly and the other, say width, is kept constant, the value of n will be
equal to 1 whereas if both the dimensions are varied linearly, n will take the value 2.)

The taper ratio c is such that 0oco1, see Figs. 1 and 2. Clearly, when c ¼ 0 the beam is uniform for which
the dynamic stiffness theory has already been developed [4]. However, when c ¼ 1, the beam tapers to a point
which makes the elastic critical buckling load of the beam zero [24,25]. Of course, c ¼ 1, is a theoretical limit
which can never be reached in practice even though the natural frequencies of this limiting case have been
reported in the literature [26]. Furthermore, the theory presupposes that the shear centre and centroid of the
beam cross-section are coincident so that there is no torsional coupling induced by the bending motion. Any
other form of coupling through Coriolis forces is also neglected. The beam is assumed to behave according to
the Bernoulli–Euler theory and only the flapping motion is considered in the analysis.
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Fig. 1. A rotating tapered beam with a constant width and a linearly varying depth for which the variations of the cross-sectional area and

the second moment of area along the length are linear and cubic, respectively: (a) pictorial view, (b) front elevation, (c) plan.
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2.1. Derivation of the governing differential equations of motion

The governing differential equations of motion of the rotating tapered beam in free vibration are derived for
the general case, see Eqs. (1) and (2), by applying Hamilton’s principle which requires the expressions for
potential (or strain) and kinetic energies of the beam as fundamental prerequisites.

The potential or strain energy U of the beam is given by

U ¼
1

2

Z L

0

EIðyÞðw00Þ2 dyþ
1

2

Z L

0

F ðyÞðw0Þ2 dy, (3)

where w is the transverse displacement (in the Z-direction, see Figs. 1 and 2), a prime denotes differentiation
with respect to y, and F(y) is the centrifugal force at a distance y from the root cross-section of the beam,
arising from the rotating action.

The centrifugal force F(y) can be expressed as

F ðyÞ ¼

Z L

y

mðyÞO2ðrH þ yÞdyþ F 0, (4)
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Fig. 2. A rotating tapered beam with linearly varying width and depth for which the variations of the cross-sectional area and the second

moment of area along the length are second and fourth order, respectively: (a) pictorial view, (b) front elevation, (c) plan.
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where F0 is an outboard force at the right-hand end of the beam, as shown in Figs. 1 and 2. (In order to make
the theory sufficiently general, this outboard force F0, which is zero when the right-hand end is completely
free, is necessary [4], e.g. when assembling dissimilar rotating tapered beams rigidly joined together.)

The kinetic energy T of the beam is given by

T ¼
1

2

Z L

0

mðyÞ _w2 dy, (5)

where an over dot represents differentiation with respect to time t.
Hamilton’s principle states

d
Z t2

t1

ðT �UÞdt ¼ 0, (6)

where t1 and t2 are the time intervals in the dynamic trajectory, and d is the usual variational operator.
Substituting for T and U, from Eqs. (3) and (5) into Eq. (6), using the d operator, integrating each term by

parts, and then collecting terms give the following governing differential equation in free vibration for the
rotating tapered beam:

ðEIw00Þ00 � ðFw0Þ0 þm €w ¼ 0. (7)

As a by-product of the Hamiltonian formulation the natural boundary conditions give the expressions for
shear force and bending moment as follows:

S ¼ ðEIw00Þ0 � Fw0, (8)

M ¼ �EIw00. (9)

Assuming harmonic oscillation so that

wðy; tÞ ¼W ðyÞ cos ot, (10)

where W is the amplitudes of w, and o the angular or circular frequency of oscillation.
Introducing the non-dimensional length x, where

x ¼ 1� c
y

L
(11)

the governing differential equation (7), on substitutions of Eqs. (4), (10) and (11) and after some simplification
becomes

xnþ2W 0000 þ 2ðnþ 2Þxnþ1W 000 þ ðC̄1x
nþ2
þ C̄2x

nþ1
þ C̄3x

n
þ C̄4ÞW

00

þ ðC̄5x
nþ1
þ C̄6x

n
ÞW 0 � C̄7x

nW ¼ 0, ð12Þ

where a prime here denotes differentiation with respect to x, and C̄1; C̄2; . . . :; C̄7 are non-dimensional
parameters defined as follows:

C̄1 ¼
m0O2L4

EI0c4ðnþ 2Þ
; C̄2 ¼ �

m0O2L3

EI0c3ðnþ 1Þ
rH þ

L

c

� �
; C̄3 ¼ ðnþ 1Þðnþ 2Þ,

C̄4 ¼ � C̄1ð1� cÞnþ2 � C̄2ð1� cÞnþ1 �
F 0L

2

EI0c2
; C̄5 ¼

m0O2L4

EI0c4
,

C̄6 ¼ �
m0O2L3

EI0c3
rH þ

L

c

� �
; C̄7 ¼

m0o2L4

EI0c4
. ð13Þ

The shear force and bending moment can also be expressed in terms of the new variable x as follows:

SðxÞ ¼ R3½x
nþ2W 000 � ðnþ 2Þxnþ1W 00 þ ðC̄1x

nþ2
þ C̄2x

nþ1
þ C̄4ÞW

0�, (14)

MðxÞ ¼ �R2x
nþ2W 00, (15)
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where

R2 ¼ EI0
c2

L2
; R3 ¼ EI0

c3

L3
. (16)

The centrifugal force, after substitution of Eqs. (1) and (11) into Eq. (4), can be written in terms of x as

F ðxÞ ¼
�m0O2L

cðnþ 1Þðnþ 2Þ
ðnþ 2Þ rH þ

L

c

� �
fð1� cÞnþ1 � xnþ1

g �
L

c
ðnþ 1Þfð1� cÞnþ2 � xnþ2

g

� �
þ F 0. (17)

The differential equation (12) is linear, but has variable coefficients and is amenable to Frobenius method of
series solution. As it will be shown later, the introduction of a further new variable z is proved to be helpful in
obtaining the roots of the indicial equation in simple form (similar to those obtained for rotating uniform
beams), which facilitates an easy and straightforward application of the series solution. Substituting

z ¼ 1� x (18)

the governing differential equation (12) becomes

ð1� zÞnþ2W 0000 þ 2ðnþ 2Þð1� zÞnþ1W 000 þ fC̄1ð1� zÞnþ2 þ C̄2ð1� zÞnþ1 þ C̄3ð1� zÞn þ C̄4gW
00

þ fC̄5ð1� zÞnþ1 þ C̄6ð1� zÞngW 0 � C̄7ð1� zÞnW ¼ 0, ð19Þ

where a prime here denotes differentiation with respect to z. Similarly, the shear force and bending moment
can be written in terms of the new variable z as follows:

SðzÞ ¼ R3½ð1� zÞnþ2W 000 � ðnþ 2Þð1� zÞnþ1W 00 þ fC̄1ð1� zÞnþ2 þ C̄2ð1� zÞnþ1 þ C̄4gW
0�, (20)

MðzÞ ¼ �R2ð1� zÞnþ2W 00. (21)

Note that the Eqs. (19)–(21) are valid for both types of tapered beam (n ¼ 1 or 2). Of course, the coefficients of
the differential equation (19) and the expressions for shear force and bending moment given by Eqs. (20) and
(21) will be different for the two cases when n is substituted as 1 or 2.

2.2. Frobenius method of solution

The exact solution of the governing differential equation (19) can be obtained in series form, using the
Frobenius method [27]. In this method, when seeking the solution, a power (infinite) series in terms of the
independent variable (in this case z) is substituted in the differential equation, which is followed by
the determination of the roots of the indicial equation and finally the evaluation of the constants. Thus, the
solution W of the differential equation (19) can be expressed as

W ðz; kÞ ¼
X1
i¼0

aiþ1ðkÞz
kþi, (22)

where k and the coefficients ai+1 are unknown and need to be determined such that W ðz; kÞ is the solution of
Eq. (19).

Because of the nature of the differential equation (19) it is now necessary to solve each of the two cases
corresponding to n ¼ 1 and 2 separately.

2.2.1. Solution for the case when n ¼ 1

Substitution of n ¼ 1 into Eq. (19) and after some simplification, one obtains

ðz3 � 3z2 þ 3z� 1ÞW 0000 þ 6ðz2 � 2zþ 1ÞW 000

þ ðC1z
3
þ C2z

2
þ C3zþ C4ÞW

00 þ ðC5z
2
þ C6zþ C7ÞW

0

þ C8ðz� 1ÞW ¼ 0, ð23Þ
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where

C1 ¼ C̄1; C2 ¼ �ð3C̄1 þ C̄2Þ; C3 ¼ 3C̄1 þ 2C̄2 þ C̄3,

C4 ¼ � ðC̄1 þ C̄2 þ C̄3 þ C̄4Þ; C5 ¼ C̄5; C6 ¼ �ð2C̄5 þ C̄6Þ,

C7 ¼ C̄5 þ C̄6; C8 ¼ �C̄7 ð24Þ

and C̄1 � C̄7 are given by Eq. (13) when n ¼ 1.
Substituting Eq. (22) into Eq. (23) yields the following indicial Eq. (27):

kðk � 1Þðk � 2Þðk � 3Þ ¼ 0. (25)

Clearly, the roots of the indicial equation are 0, 1, 2, 3, which are all distinct and separate integers. Note that
the indicial Eq. (25) has turned out to be exactly the same as the one encountered in a uniform rotating beam
[4,16]. (This has been possible because the variable x was changed to z where z ¼ 1�x.)

Using standard procedure [27] the recurrence relationship which determines the coefficient terms for each of
the four roots of the indicial equation can be expressed as

aiþ5ðkÞ ¼ 3
ðk þ i þ 2Þ

ðk þ i þ 4Þ
aiþ4 �

3ðk þ iÞðk þ i � 1Þ þ 12ðk þ iÞ � C4

ðk þ i þ 4Þðk þ i þ 3Þ
aiþ3

þ
ðk þ iÞðk þ i � 1Þðk þ i � 2Þ þ 6ðk þ iÞðk þ i � 1Þ þ C3ðk þ iÞ þ C7

ðk þ i þ 4Þðk þ i þ 3Þðk þ i þ 2Þ
aiþ2

þ
C2ðk þ iÞðk þ i � 1Þ þ C6ðk þ iÞ � C8

ðk þ i þ 4Þðk þ i þ 3Þðk þ i þ 2Þðk þ i þ 1Þ
aiþ1

þ
C1ðk þ i � 1Þðk þ i � 2Þ þ C5ðk þ i � 1Þ þ C8

ðk þ i þ 4Þðk þ i þ 3Þðk þ i þ 2Þðk þ i þ 1Þ
ai, ð26Þ

where

a1 ¼ 1; a2 ¼
3ðk � 1Þ

ðk þ 1Þ
a1,

a3 ¼
3k

ðk þ 2Þ
a2 �

3ðk � 2Þðk � 3Þ þ 12ðk � 2Þ � C4

ðk þ 2Þðk þ 1Þ
a1,

a4 ¼
3ðk þ 1Þ

k þ 3
a3 �

3ðk � 1Þðk � 2Þ þ 12ðk � 1Þ � C4

ðk þ 3Þðk þ 2Þ
a2

þ
ðk � 1Þðk � 2Þðk � 3Þ þ 6ðk � 1Þðk � 2Þ þ C3ðk � 1Þ þ C7

ðk þ 3Þðk þ 2Þðk þ 1Þ
a1,

a5 ¼
3ðk þ 2Þ

ðk þ 4Þ
a4 �

3kðk � 1Þ þ 12k � C4

ðk þ 4Þðk þ 3Þ
a3 þ

kðk � 1Þðk � 2Þ þ 6kðk � 1Þ þ C3k þ C7

ðk þ 4Þðk þ 3Þðk þ 2Þ
a2

þ
C2kðk � 1Þ þ C6k � C8

ðk þ 4Þðk þ 3Þðk þ 2Þðk þ 1Þ
a1. ð27Þ

The solution of the governing differential equation of motion can now be expressed as a combination of
four linear solutions multiplied by four arbitrary constants as follows:

W ðzÞ ¼ A1f ðz; 0Þ þ A2f ðz; 1Þ þ A3f ðz; 2Þ þ A4f ðz; 3Þ, (28)

where A1, A2, A3 and A4 are the four arbitrary constants and

f ðz; kÞ ¼
X1
i¼0

aiþ1ðkÞz
kþi (29)

with k ¼ 0, 1, 2 and 3.
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The four independent solutions f(z, k) for k ¼ 0, 1, 2 and 3, can be expanded using the first few terms as
follows:

f ðz; 0Þ ¼ a1ð0Þ þ a2ð0Þzþ a3ð0Þz
2
þ a4ð0Þz

3
þ a5ð0Þz

4
þ � � �

f ðz; 1Þ ¼ a1ð1Þzþ a2ð1Þz
2
þ a3ð1Þz

3
þ a4ð1Þz

4
þ a5ð1Þz

5
þ � � �

f ðz; 2Þ ¼ a1ð2Þz
2
þ a2ð2Þz

3
þ a3ð2Þz

4
þ a4ð2Þz

5
þ a5ð2Þz

6
þ � � �

f ðz; 3Þ ¼ a1ð3Þz
3
þ a2ð3Þz

4
þ a3ð3Þz

5
þ a4ð3Þz

6
þ a5ð3Þz

7
þ � � � . ð30Þ

With the help of Eqs. (28), (20) and (21), the expressions for the bending rotation y, shear force S and
bending moment M are, respectively, given by

yðzÞ ¼
c

L

dW

dz
¼

c

L
A1f

0
ðz; 0Þ þ A2f

0
ðz; 1Þ þ A3f 0ðz; 2Þ þ A4f 0ðz; 3Þ

� �
, (31)

SðzÞ ¼ R3½ð1� zÞ3W 000 � 3ð1� zÞ2W 00 þ fC̄1ð1� zÞ3 þ C̄2ð1� zÞ2 þ C̄4gW
0�, (32)

MðzÞ ¼ �R2ð1� zÞ3W 00. (33)

2.2.2. Solution for the case when n ¼ 2

The differential equation for the case n ¼ 2 follows from Eq. (19) and takes the following form:

ðz4 � 4z3 þ 6z2 � 4zþ 1ÞW 0000 þ 8ðz3 � 3z2 þ 3z� 1ÞW 000

þ ðC1z
4
þ C2z

3
þ C3z

2
þ C4zþ C5ÞW

00 þ ðC6z
3
þ C7z

2
þ C8zþ C9ÞW

0

þ C10ðz
2
� 2zþ 1ÞW ¼ 0 ð34Þ

with

C1 ¼ C̄1 C2 ¼ �ð4C̄1 þ C̄2Þ;

C3 ¼ 6C̄1 þ 3C̄2 þ C̄3 C4 ¼ �ð4C̄1 þ 3C̄2 þ 2C̄3Þ;

C5 ¼ C̄1 þ C̄2 þ C̄3 þ C̄4 C6 ¼ C̄5;

C7 ¼ �ð3C̄5 þ C̄6Þ C8 ¼ 3C̄5 þ 2C̄6;

C9 ¼ �ðC̄5 þ C̄6Þ C10 ¼ �C̄7;

(35)

where C̄1 � C̄7 are given by Eq. (13) when n ¼ 2.
The differential equation (34) can be solved in a similar manner to that of the previous Eq. (23) when n was

1. The indicial equation takes exactly the same form as Eq. (25) and yields the roots k ¼ 0, 1, 2, 3, as before,
but of course, the final solution will be different because the coefficient terms ai+1(k) in Eq. (22) are different.
The recurrence relationship for this case when n ¼ 2, is given by

aiþ6 ¼ 4
ðk þ i þ 3Þ

ðk þ i þ 5Þ
aiþ5 �

6ðk þ i þ 1Þðk þ iÞ þ 24ðk þ i þ 1Þ þ C5

ðk þ i þ 5Þðk þ i þ 4Þ
aiþ4

þ
4ðk þ i þ 1Þðk þ iÞðk þ i � 1Þ þ 24ðk þ i þ 1Þðk þ iÞ � C4ðk þ i þ 1Þ � C9

ðk þ i þ 5Þðk þ i þ 4Þðk þ i þ 3Þ
aiþ3

�
ðk þ i þ 1Þðk þ iÞðk þ i � 1Þðk þ i þ 6Þ þ C3ðk þ i þ 1Þðk þ iÞ þ C8ðk þ i þ 1Þ þ C10

ðk þ i þ 5Þðk þ i þ 4Þðk þ i þ 3Þðk þ i þ 2Þ
aiþ2

�
C2ðk þ iÞðk þ i � 1Þ þ C7ðk þ iÞ � 2C10

ðk þ i þ 5Þðk þ i þ 4Þðk þ i þ 3Þðk þ i þ 2Þ
aiþ1

�
C1ðk þ i � 1Þðk þ i � 2Þ þ C6ðk þ i � 1Þ þ C10

ðk þ i þ 5Þðk þ i þ 4Þðk þ i þ 3Þðk þ i þ 2Þ
ai, ð36Þ
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where

a1 ¼ 1; a2 ¼
4ðk � 1Þ

ðk þ 1Þ
a1; a3 ¼

4k

ðk þ 2Þ
a2 �

6ðk � 2Þðk � 3Þ þ 24ðk � 2Þ þ C5

ðk þ 2Þðk þ 1Þ
a1,

a4 ¼
4ðk þ 1Þ

k þ 3
a3 �

6ðk � 1Þðk � 2Þ þ 24ðk � 1Þ þ C5

ðk þ 3Þðk þ 2Þ
a2

þ
4ðk � 1Þ k � 2ð Þ k � 3ð Þ þ 24ðk � 1Þ k � 2ð Þ � C4ðk � 1Þ � C9

k þ 3ð Þðk þ 2Þðk þ 1Þ
a1,

a5 ¼
4ðk þ 2Þ

k þ 4
a4 �

6kðk � 1Þ þ 24k þ C5

ðk þ 4Þðk þ 3Þ
a3 þ

4kðk � 1Þðk � 2Þ þ 24kðk � 1Þ � C4k � C9

ðk þ 4Þðk þ 3Þðk þ 2Þ
a2

�
kðk � 1Þðk � 2Þðk � 3Þ þ 8kðk � 1Þðk � 2Þ þ C3kðk � 1Þ þ C8k þ C10

ðk þ 4Þðk þ 3Þðk þ 2Þðk þ 1Þ
a1,

a6 ¼
4ðk þ 3Þ

ðk þ 5Þ
a5 �

6kðk þ 1Þ þ 24ðk þ 1Þ þ C5

ðk þ 5Þðk þ 4Þ
a4

þ
4kðk þ 1Þðk � 1Þ þ 24kðk þ 1Þ � C4ðk þ 1Þ � C9

ðk þ 5Þðk þ 4Þðk þ 3Þ
a3

�
kðk þ 1Þðk � 1Þðk � 2Þ þ 8kðk þ 1Þðk � 1Þ þ C3kðk þ 1Þ þ C8ðk þ 1Þ þ C10

ðk þ 5Þðk þ 4Þðk þ 3Þðk þ 2Þ
a2

�
c2kðk � 1Þ þ C7k � 2C10

ðk þ 5Þðk þ 4Þðk þ 3Þðk þ 2Þ
a1. ð37Þ

Note that ai (i ¼ 1, 2,y6) above are all functions of k as in the case n ¼ 1. The solution of the governing
differential equation for n ¼ 2 can now be expressed exactly in the same way as Eq. (28), but with different sets
of four solutions f ðz; kÞ obtained by using the recurrence relationship given by Eq. (36). The expression for the
bending rotation y will have the same form as Eq. (31), but of course, will now contain different expressions
for f 0ðz; kÞ. The expressions for shear force S and bending moment M follow from Eqs. (20) and (21), and are,
respectively, given by

SðzÞ ¼ R3½ð1� zÞ4W 000 � 4ð1� zÞ3W 00 þ fC̄1ð1� zÞ4 þ C̄2ð1� zÞ3 þ C̄4gW
0�, (38)

MðzÞ ¼ �R2ð1� zÞ4W 00. (39)

2.3. Formulation of the dynamic stiffness matrix

Having developed the expressions for bending displacement (W), bending rotation (y), shear force (S) and
bending moment (M), the dynamic stiffness matrix can now be formulated by applying the boundary
conditions for both cases.

Following the sign convention shown in Fig. 3 for positive shear force and bending moment and referring to
Fig. 4, the boundary conditions for the displacements and forces (for each of the two cases, i.e., n ¼ 1 and 2)
are given as follows:

Displacements:

At y ¼ 0 ði:e: x ¼ 1 or z ¼ 0Þ : W ¼W 1; y ¼ y1,

At y ¼ L ði:e: x ¼ 1� c or z ¼ cÞ : W ¼W 2; y ¼ y2. ð40Þ

Forces:

At y ¼ 0 ði:e: x ¼ 1 or z ¼ 0Þ : S ¼ S1; M ¼M1,

At y ¼ L ði:e: x ¼ 1� c or z ¼ cÞ : S ¼ �S2; M ¼ �M2. ð41Þ

Substituting Eq. (40) into Eqs. (28) and (31) gives the following matrix relationship. (Note that Eqs. (28)
and (31) are applicable to both cases for n ¼ 1 and 2)

d ¼ HA, (42)
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where

d ¼ W 1y1W 2y2½ �
T; A ¼ A1A2A3A4½ �T (43)

and

H ¼

a1ð0Þ 0 0 0
c

L
a2ð0Þ

c

L
a1ð1Þ 0 0

f ðc; 0Þ f ðc; 1Þ f ðc; 2Þ f ðc; 3Þ
c

L
f 0ðc; 0Þ

c

L
f 0ðc; 1Þ

c

L
f 0ðc; 2Þ

c

L
f 0ðc; 3Þ

2
6666664

3
7777775
. (44)

Note that the upper suffix T in Eq. (43) denotes a transpose, and the elements ai and f(c,i) of the matrix H in
Eq. (44) are different for the two cases with n ¼ 1 and 2 (see Eqs. (27), (30) and (37)).

Similarly, substituting Eq. (41) into Eqs. (32), (33) for n ¼ 1, and into (38), (39) for n ¼ 2 gives the following
matrix relationship:

F ¼ QA, (45)

where the column matrix A (i.e. the vector of constants A1 � A4) has already been defined in Eq. (43) and

F ¼ S1M1S2M2½ �T (46)
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and the matrix Q is expressed as follows:

Q ¼

q11 q12 q13 q14

q21 q22 q23 q24

q31 q32 q33 q34

q41 q42 q43 q34

2
66664

3
77775. (47)

The elements of Q matrix, qijði ¼ 1; 2; . . . 4; j ¼ 1; 2; . . . 4Þ obtained from the expressions for shear force
and bending moment, are different for the two cases as expected, and these are given in Appendix A. Note that
the column vectors for nodal displacements d, nodal forces F, and the constants A, are represented by their
respective transposes in order to save space.

The dynamic stiffness matrix of the rotating tapered beam K can now be derived by eliminating the constant
vector A from Eqs. (42) and (45) and thus relating the amplitudes of the forces F to those of the displacements
d at the ends of the harmonically vibrating rotating tapered beam. In matrix notation, this is represented by

F ¼ Kd, (48)

where

K ¼ QH�1 (49)

is the required frequency dependant dynamic stiffness matrix of the rotating tapered beam.

3. Results and discussion

The above dynamic stiffness matrix can now be used to compute natural frequencies and mode shapes of
either a single rotating tapered beam or an assembly of them. An accurate and reliable method of applying the
dynamic stiffness matrix in free vibration analysis is to use the algorithm of Wittrick and Williams, generally
known as the W–W algorithm, which has featured in literally hundreds of papers since its original
development [23].

By applying the theory in conjunction with the W–W algorithm, a large set of results for natural frequencies
and mode shapes of rotating tapered beams for various boundary conditions was obtained. However, because
of space limitation the authors have been selective in the presentation of results by resorting to the practical
case of cantilever boundary conditions, which has widespread coverage in the literature.

The following non-dimensional natural frequency (li) and rotational speed parameter (Z) are defined:

li ¼ oi=o0; Z ¼ O=o0, (50)

where the ith natural frequency oi, and the rotational speed O are non-dimensionalised with respect to o0,
which is given by

o0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
EI0

m0L4

s
. (51)

Results are given for both types of tapered beam whose profiles are uniquely defined by the integer n which
can be either 1 or 2. In particular, the effects of rotational speed parameter (Z), taper ratio (c), and hub radius
ratio (rH/L) on the non-dimensional natural frequencies (li) are investigated.

For the two values of n (1 and 2) Fig. 5 shows the variation of the first four non-dimensional natural
frequencies with rotational speed parameter for the tapered beam when c ¼ 0:5 and rH/L ¼ 0. The solid and
broken lines represent the two cases n ¼ 1 and 2, respectively. The figure shows an increasing trend of the non-
dimensional natural frequencies with the rotational speed parameter as expected. Although each of li for the
two cases looks very close to each other, the actual natural frequencies, see Eqs. (50) and (51), can be markedly
different. For validation purposes, a set of natural frequencies computed for a range of rotational speed
parameters for the two types of tapered beam is shown up to six-figure accuracy in Table 1. The results for the
case n ¼ 1 agreed completely with the exact ones reported by Hodges and Rutkowski [7]. However, the results
for the case n ¼ 2 reported by Khulief [8] did not agree with the ones in Table 1. Representative results from
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Ref. [8] for the case when Z ¼ 10 are shown bold in parenthesis (see last row and columns 7–11 of Table 1).
Clearly, there are considerable differences (around 25% in the fundamental) between the results from the
present theory and those reported by Khulief (see Table 7 of Ref. [8]). This anomaly prompted a further
investigation by the present authors who idealised the tapered beam (for the case n ¼ 2) by discretising it into
20 and 50 uniform beams, respectively, so as to represent the tapered beam as a stepped beam. This approach
is similar to that used in Ref. [4] which showed that the parabolic limit of the approximate results (using
different number of uniform elements to represent the tapered beam) gives accurate results. For a taper ratio
c ¼ 0:5 and for two different rotational speed parameters Z ¼ 5 and 10, Table 2 shows approximate results
using 20 and 50 uniform elements (N) and their parabolic limit. The approximate results of Table 2 are in good
agreement with the corresponding results of Table 1 and importantly, the parabolic limit of the approximate
results agreed accurately (up to five significant figures!) with the exact results. (Note that if the parabolic limit
is not used, around 500 uniform elements will be needed to obtain a five-figure accuracy.) The authors,
nevertheless, sought an independent confirmation of the correctness of their results. Hodges and Rutkowski
[7] did not present results for the case n ¼ 2, but they developed the necessary theory and computer programs
to analyse this particular case. At the authors’ request, the first author of Ref. [7] provided the required results,
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Fig. 5. The effect of rotational speed parameter on the first four non-dimensional natural frequencies of a rotating tapered cantilever beam
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and confirmed the correctness of the current theory. The results from this independent investigation which
agreed completely with the results obtained from the present theory were communicated to the authors by a
private (e-mail) communication [22].

Fig. 6 illustrates the effects of taper ratio on the first three non-dimensional natural frequencies of the
tapered beam for both n ¼ 1 and 2 when rH/L is zero, and Z is set to 0 and 5, respectively. For interested
readers who wish to cheque their own theories or computer programs based on the equations given in this
paper, Tables 3 and 4 provide numerical results for the two cases, respectively. The results demonstrate the
effects of both taper ratio and rotational speed parameter on the non-dimensional natural frequencies.

The next set of results was obtained to demonstrate the effect of hub radius ratio on the non-dimensional
natural frequencies of the tapered beam. Fig. 7 illustrates this effect for both n ¼ 1 and 2, when Z and c are set
to 5 and 0.5, respectively. The non-dimensional natural frequencies increase with the hub radius ratio as
expected because of the increase in centrifugal stiffening of the beam and the results are in accord with earlier
investigations [9,11].

Another set of results was obtained to illustrate some representative mode shapes of the rotating tapered
beam. Fig. 8 shows the first five non-dimensional natural frequencies and normalised mode shapes of the two
types of the rotating tapered beam for which the values of c, Z and rH/L were set to 0.5, 5.0 and 0.0,
respectively. It is interesting to note that for this particular case, the non-dimensional natural frequencies and
the corresponding normalised mode shapes for the two types of a tapered beam are similar. This is not
unexpected in view of Eqs. (1) and (2), which show that for any value of c, the corresponding ratio of the
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Table 1

The effect of rotational speed parameter (Z) on the non-dimensional natural frequencies (li) for a rotating cantilever beam with c ¼ 0:5 and
rH/L ¼ 0

Z n ¼ 1 n ¼ 2

l1 l2 l3 l4 l5 l1 l2 l3 l4 l5

0 3.82379 18.3173 47.2648 90.4505 148.002 4.62515 19.5476 48.5789 91.8128 149.390

1 3.98661 18.4740 47.4173 90.6039 148.156 4.76405 19.6803 48.7073 91.9409 149.518

2 4.43680 18.9366 47.8717 91.0625 148.619 5.15641 20.0733 49.0906 92.3243 149.903

3 5.09267 19.6839 48.6190 91.8216 149.386 5.74578 20.7121 49.7227 92.9597 150.542

4 5.87877 20.6851 49.6456 92.8730 150.454 6.47262 21.5749 50.5938 93.8415 151.431

5 6.74340 21.9053 50.9338 94.2064 151.814 7.29014 22.6360 51.6918 94.9627 152.567

6 7.65514 23.3093 52.4632 95.8090 153.460 8.16630 23.8684 53.0018 96.3142 153.942

7 8.59557 24.8647 54.2124 97.6666 155.380 9.08036 25.2461 54.5082 97.8861 155.552

8 9.55396 26.5437 56.1595 99.7638 157.564 10.0192 26.7454 56.1941 99.6673 157.387

9 10.5239 28.3227 58.2833 102.084 160.001 10.9747 28.3459 58.0434 101.646 159.439

10 11.5015 30.1827 60.5639 104.612 162.677 11.9415 30.0299 60.0399 103.810 161.701

(8.93378) (25.3048) (55.0124) (98.6147) (156.494)

Results from Ref. [8] for the case when n ¼ 2 and Z ¼ 10 are shown bold in parenthesis.

Table 2

The first five non-dimensional natural frequencies for a rotating tapered cantilever beam for the case n ¼ 2 with c ¼ 0:5 and rH/L ¼ 0 using

uniform-element idealization

li ¼ oi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0L4=EI0

q
Z ¼ 5 Z ¼ 10

N ¼ 20 N ¼ 50 Parabolic limit N ¼ 20 N ¼ 50 Parabolic limit

l1 7.28411 7.28918 7.29014 11.9352 11.9405 11.9415

l2 22.5994 22.6301 22.6360 29.9980 30.0248 30.0299

l3 51.5892 51.6754 51.6917 59.9458 60.0247 60.0397

l4 94.7626 94.9303 94.9623 103.620 103.779 103.809

l5 152.237 152.513 152.566 161.383 161.649 161.699
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bending rigidity EI(y) and the mass per unit length m(y) at any cross-section of the tapered beam is exactly the
same for both n ¼ 1 and 2.

4. Scope and limitations of the theory

The theory developed in this paper is intended to be used for free vibration analysis of rotating tapered
beams within the range of taper ratio 0oco1. Results have been presented in the previous section for
practical values of c, which lie between 0.1 and 0.8.

For the special case when c ¼ 0, the tapered beam reduces to a uniform one, see Eqs. (1) and (2), and the
present theory cannot be used because of numerical overflow resulting from division by zero, see Eq. (13). In
this case, the simpler dynamic stiffness theory developed earlier by Banerjee [4] can be used. However, the
present theory will allow the use of small values of c close to zero (say, 10�3 or 10�4) to obtain results for
rotating uniform beams within reasonable accuracy.
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Another special case arises when c ¼ 1, see Eqs. (1) and (2). At this limiting value of c the thin end of the
beam converges to a sharp point and the present theory will cause numerical ill-conditioning and hence cannot
be used. Of course, c ¼ 1 is a theoretical limit which can never be reached in practice. It is well known that the
elastic critical buckling load of such a point-ended beam is zero [24,25]. However, the free vibration analysis of
such a point-ended beam in the absence of any axial load has been reported in Ref. [26]. The present theory
can be used to obtain an approximate result for this case by using a taper ratio close to unity. For both n ¼ 1
and 2, and for cantilever end-condition at the thick end of the beam, Table 5 shows results for c ¼ 0:99 and
0.995 for hub radius ratio rH/L ¼ 0 when the rotational speed parameter Z is set to 0 and 5, respectively. The
results converge almost parabolically as the value of c increases towards unity. Thus, the result for c ¼ 1 can
be extrapolated by establishing the parabolic limit of the two sets of results obtained using c ¼ 0.99 and 0.995.
As shown in Table 5, the parabolic limits of the results for the non-rotating beam are in close agreement with
the ones reported in Ref. [26], which are shown bold in the parenthesis. Comparison of natural frequencies for
the rotating tapered beam with c ¼ 1 has not been possible because to the best of the authors’ knowledge no
specimen results could be found in the literature.

5. Conclusions

The free vibration problem of a rotating tapered beam is investigated by developing its dynamic stiffness
matrix, and then using it in conjunction with the W–W algorithm. The type of taper considered covers a large
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Table 4

The effect of taper ratio (c) and rotational speed parameter (Z) on the non-dimensional natural frequencies (li) for a rotating cantilever

beam for the case n ¼ 2 with rH/L ¼ 0

c Z ¼ 0 Z ¼ 5 Z ¼ 10

l1 l2 l3 l1 l2 l3 l1 l2 l3

0.1 3.67370 21.5503 59.1886 6.56330 24.9029 62.6152 11.3017 32.9554 71.8405

0.2 3.85511 21.0568 56.6303 6.69693 24.3478 59.9763 11.4188 32.2499 68.9817

0.3 4.06694 20.5555 54.0152 6.85629 23.7820 57.2815 11.5589 31.5243 66.0667

0.4 4.31878 20.0500 51.3346 7.04980 23.2088 54.5230 11.7295 30.7818 63.0887

0.5 4.62515 19.5476 48.5789 7.29014 22.6360 51.6918 11.9415 30.0299 60.0399

0.6 5.00904 19.0649 45.7384 7.59724 22.0803 48.7797 12.2119 29.2867 56.9143

0.7 5.50926 18.6412 42.8104 8.00426 21.5823 45.7866 12.5679 28.5962 53.7154

0.8 6.19639 18.3855 39.8336 8.56998 21.2521 42.7558 13.0550 28.0752 50.4956

0.9 7.20488 18.6803 37.1241 9.40214 21.4620 40.0150 13.7492 28.0900 47.6075

Table 3

The effect of taper ratio (c) and rotational speed parameter (Z) on the non-dimensional natural frequencies (li) for a rotating tapered

cantilever beam for the case n ¼ 1 with rH/L ¼ 0

c Z ¼ 0 Z ¼ 5 Z ¼ 10

l1 l2 l3 l1 l2 l3 l1 l2 l3

0.1 3.55870 21.3381 58.9799 6.49115 24.7805 62.5113 11.2455 32.9968 71.9834

0.2 3.60827 20.6210 56.1923 6.53913 24.0961 59.7504 11.2950 32.3325 69.2537

0.3 3.66675 19.8806 53.3222 6.59525 23.3906 56.9112 11.3523 31.6445 66.4503

0.4 3.73708 19.1138 50.3537 6.66206 22.6612 53.9789 11.4200 30.9292 63.5598

0.5 3.82379 18.3173 47.2649 6.74340 21.9053 50.9338 11.5015 30.1827 60.5639

0.6 3.93428 17.4878 44.0248 6.84537 21.1207 47.7478 11.6023 29.4013 57.4379

0.7 4.08171 16.6252 40.5879 6.97848 20.3086 44.3805 11.7314 28.5839 54.1459

0.8 4.29249 15.7427 36.8846 7.16281 19.4848 40.7725 11.9055 27.7441 50.6370

0.9 4.63073 14.9308 32.8331 7.44359 18.7412 36.8667 12.1592 26.9695 46.8737
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number of practical cases. A detailed set of numerical results is presented and some inaccuracies in published
results are corrected. It is intended that the numerical results of this paper will constitute benchmark answers
to some of the free vibration problems of rotating tapered beams. An extension of the dynamic stiffness theory
to a rotating tapered Timoshenko beam will be considerably more difficult because unlike rotating uniform
Timoshenko beams, the two differential equations governing the bending displacement and bending rotation
will be very different.
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Appendix A

Elements of Q matrix of Eq. (47).

A.1. Tapered beam with profile defined by n ¼ 1

q11 ¼ R3f6a4ð0Þ � 6a3ð0Þ þ ðC̄1 þ C̄2 þ C̄4Þa2ð0Þg,

q12 ¼ R3f6a3ð1Þ � 6a2ð1Þ þ ðC̄1 þ C̄2 þ C̄4Þa1ð1Þg,

q13 ¼ 6R3fa2ð2Þ � a1ð2Þg; q14 ¼ 6R3a1ð3Þ,

q21 ¼ � 2R2a3ð0Þ; q22 ¼ �2R2a2ð1Þ; q23 ¼ �2R2a1ð2Þ; q24 ¼ 0,
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Fig. 8. Non-dimensional natural frequencies and normalised mode shapes of a rotating tapered cantilever beam with c ¼ 0:5, Z ¼ 5, and

rH=L ¼ 0. ———————— n ¼ 1, - � - � - � - � - � - � - � - � - � - � n ¼ 2.
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q3i ¼ � R3½ð1� cÞ3f 000ðc; i � 1Þ � 3ð1� cÞ2f 00ðc; i � 1Þ

þ fC̄1ð1� cÞ3 þ C̄2ð1� cÞ2 þ C̄4gf
0
ðc; i � 1Þ�,

q4i ¼ R2ð1� cÞ3f 00ðc; i � 1Þ. ðA:1Þ

A.2. Tapered beam with profile defined by n ¼ 2

q11 ¼ R3f6a4ð0Þ � 8a3ð0Þ þ ðC̄1 þ C̄2 þ C̄4Þa2ð0Þg,

q12 ¼ R3f6a3ð1Þ � 8a2ð1Þ þ ðC̄1 þ C̄2 þ C̄4Þa1ð1Þg,

q13 ¼ R3f6a2ð2Þ � 8a1ð2Þg; q14 ¼ 6R3a1ð3Þ,

q21 ¼ � 2R2a3ð0Þ; q22 ¼ �2R2a2ð1Þ; q23 ¼ �2R2a1ð2Þ; q24 ¼ 0,

q3i ¼ � R3½ð1� cÞ4f 000ðc; i � 1Þ � 4ð1� cÞ3f 00ðc; i � 1Þ

þ fC̄1ð1� cÞ4 þ C̄2ð1� cÞ3 þ C̄4gf
0
ðc; i � 1Þ�,

q4i ¼ R2 1� cð Þ
4f 00ðc; i � 1Þ. ðA:2Þ
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